煤炭工程 ›› 2025, Vol. 57 ›› Issue (12): 25-31.doi: 10. 11799/ ce202512004

• 设计技术 • 上一篇    下一篇

井下作业人员多维状态监测及实时风险预警系统研究

张雪军,杨国伟,郝博南   

  1. 1. 煤炭科学技术研究院有限公司,北京 100013

    2. 煤炭智能开采与岩层控制全国重点实验室,北京 100013

    3. 煤矿应急避险技术装备工程研究中心,北京 100013

    4. 北京市煤矿安全工程技术研究中心,北京 100013

  • 收稿日期:2025-07-25 修回日期:2025-10-17 出版日期:2025-12-11 发布日期:2026-01-26
  • 通讯作者: 张雪军 E-mail:15201208162@139.com

Research on Multi-Dimensional Condition Monitoring and Real-Time Risk Warning System for Underground Operators

  • Received:2025-07-25 Revised:2025-10-17 Online:2025-12-11 Published:2026-01-26

摘要:

针对煤矿井下作业环境的复杂性与高危性以及井下人员健康监测困难,监测手段单一等问题,提出了一种基于智能手环、便携监测仪和智能信息矿灯的多维状态监测及实时风险预警系统。该系统通过实时采集井下工作人员的体征参数(如心率、体温、血氧饱和度等)和环境参数(如甲烷、一氧化碳浓度等),并利用矿山物联网将数据上传至地面服务器,构建统一的监控平台。在数据处理方面,创新性地建立了基于反向传播神经网络的疲劳度判定模型,通过分析体征参数与汗液pH值的相关性,实现对矿工疲劳程度的精准估计。此外,结合条件扩散模型(CSDI),系统能够整合体征、环境及人员定位等多维数据,实现动态风险预警与超前健康诊断。实验结果表明,该系统疲劳度判定误差不超过0.05,预警准确率达95%以上,显著提升了矿井人员作业的安全性和健康管理水平。

关键词: 健康监测, 环境监测, 疲劳度判定, 神经网络, 风险预警

Abstract:

Abstract: This study addresses the challenges of complex and high-risk underground coal mine environments, difficulties in personnel health monitoring, and the limitations of single monitoring methods. It proposes a multi-dimensional status monitoring and real-time risk prediction system based on smart wristbands, portable monitors, and smart information-capable miner's lamps. The system collects real-time physiological parameters (e.g., heart rate, body temperature, blood oxygen saturation) and environmental parameters (e.g., methane, carbon monoxide concentrations) from underground personnel. Data is transmitted to a surface server via the mine IoT (Internet of Things) system, establishing a unified monitoring platform.For data processing, the study innovatively establishes a fatigue assessment model based on a Backpropagation Neural Network (BPNN). This model achieves precise estimation of miners' fatigue levels by analyzing the correlation between physiological parameters and perspiration pH value. Furthermore, by Conditional Score-based Diffusion Models (CSDI), the system fuses multi-dimensional data (physiological, environmental, and personnel location) to enable dynamic risk prediction and proactive health assessment.Experimental results demonstrate that the system achieves a fatigue assessment error not exceeding 0.05 and a prediction accuracy rate of 95% or higher, significantly enhancing operational safety and health management for mine personnel. This research provides an intelligent solution for coal mine safety production, holding substantial theoretical value and practical significance.

中图分类号: